organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2-Diphenylacetamide

Jerry P. Jasinski,^a* James A. Golen,^a M. S. Siddegowda,^b H. S. Yathirajan^b and M. T. Swamy^c

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^cDepartment of Chemistry, Sambhram Institute of Technology, Bangalore 560 097, India Correspondence e-mail: jjasinski@keene.edu

Received 3 July 2011; accepted 5 July 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.107; data-to-parameter ratio = 13.1.

In the title compound, $C_{14}H_{13}NO$, which has two molecules in the asymmetric unit, the dihedral angles between the mean planes of the benzene rings are 84.6 (7) and 85.0 (6)°. N– H···O hydrogen bonds [forming $R_2^2(8)$ ring motifs] and C– H···O hydrogen bonds dominate the crystal packing, forming zigzag chains parallel to the *a* axis. In addition, weak intermolecular C–H··· π interactions are observed.

Related literature

For the synthesis and antimycobacterial activity of 2,2diphenylacetamide derivatives, see: Guzel *et al.* (2006). For related structures, see: Akkurt *et al.* (2007); Dutkiewicz *et al.* (2010); Gerkin (1998); Krigbaum *et al.* (1968); Narasegowda *et al.* (2005); Yathirajan *et al.* (2005). For standard bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{array}{l} C_{14}H_{13}\text{NO} \\ M_r = 211.25 \\ \text{Monoclinic, } P2_1 \\ a = 5.1687 \ (3) \text{ Å} \\ b = 28.5511 \ (13) \text{ Å} \\ c = 7.8006 \ (4) \text{ Å} \\ \beta = 98.152 \ (5)^{\circ} \end{array}$

$V = 1139.52 (10) \text{ Å}^3$	
Z = 4	
Cu Ka radiation	
$\mu = 0.61 \text{ mm}^{-1}$	
T = 173 K	
$0.40 \times 0.25 \times 0.20$ mm	ı

Data collection

```
Oxford Diffraction Xcalibur Eos
Gemini diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2010)
T_{\rm min} = 0.792, T_{\rm max} = 0.887
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.107$ S = 1.073978 reflections 303 parameters 9 restraints 6490 measured reflections 3978 independent reflections 3869 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg4 are the centroids of the C3-C8 and C23-C28 rings, respectively.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1B\cdotsO1^{i}$ $N1-H1A\cdotsO2^{ii}$ $N2-H2B\cdotsO1^{iii}$ $N2-H2A\cdotsO2^{iv}$	$\begin{array}{c} 0.89 \ (1) \\ 0.87 \ (1) \\ 0.88 \ (1) \\ 0.89 \ (1) \end{array}$	2.20 (2) 2.09 (1) 2.07 (1) 2.17 (2)	2.9409 (17) 2.9575 (19) 2.9526 (19) 2.9407 (18)	140 (2) 177 (2) 176 (2) 145 (2)
$\begin{array}{l} N1 - H1 A \cdots N2^{ii} \\ N2 - H2 B \cdots N1^{iii} \\ C10 - H10 A \cdots O1 \\ C18 - H18 A \cdots O2 \\ C2 - H2 C \cdots Cg1^{i} \\ C16 - H16 A \cdots Cg4^{iv} \end{array}$	0.87 (1) 0.88 (1) 0.95 0.95 1.00 1.00	3.06 (2) 3.10 (2) 2.50 2.51 2.96 2.95	3.7246 (18) 3.7246 (18) 3.093 (2) 3.099 (2) 3.9379 (18) 3.9263 (18)	134 (2) 130 (2) 120 120 165 166

Symmetry codes: (i) x + 1, y, z; (ii) x, y, z + 1; (iii) x, y, z - 1; (iv) x - 1, y, z.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer. MSS thanks the University of Mysore for the research facilities and R. L. Fine Chem, Bangalore, India, for the gift sample.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2307).

References

- Akkurt, M., Karaca, S., Şahin, E., Güzel, Ö., Salman, A. & İlhan, E. (2007). *Acta Cryst.* E63, 03379–03380.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Dutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, 0499.
- Gerkin, R. E. (1998). Acta Cryst. C54, 1887-1889.
- Guzel, O., Ilhan, E. & Salman, A. (2006). Monatsh. Chem. 137, 795-801.

Krigbaum, W. R., Roe, R.-J. & Woods, J. D. (1968). Acta Cryst. B24, 1304–1312. Narasegowda, R. S., Yathirajan, H. S. & Bolte, M. (2005). Acta Cryst. E61, 0939–0940. Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Yathirajan, H. S., Nagaraj, B., Narasegowda, R. S., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, 01193–01195.

Acta Cryst. (2011). E67, 01992-01993 [doi:10.1107/S1600536811026717]

2,2-Diphenylacetamide

J. P. Jasinski, J. A. Golen, M. S. Siddegowda, H. S. Yathirajan and M. T. Swamy

Comment

The synthesis and antimycobacterial activity of some new 2,2-diphenylacetamide derivatives is described (Guzel *et al.*, 2006). The title compound is used to synthesize various biologically active and pharmaceutical compounds viz., loperamide, darifenacin, fenpiverine, etc. The crystal structures of N,N-diphenylacetamide (Krigbaum *et al.*, 1968), 4,4'-dimethylbiphenyl-2,2'-dicarboxylic acid (Gerkin, 1998), 4'-methylbiphenyl-2-carboxylic acid (Narasegowda *et al.*, 2005) and 4'-(2-butyl-4-chloro-5-formylimidazol-1-ylmethyl)biphenyl-2-carbonitrile (Yathirajan *et al.*, 2005), 2-hydroxy-N-(3-oxo-1-thia-4-azaspiro[4.5]dec-4-yl)-2,2-diphenylacetamide (Akkurt *et al.*, 2007) and 2-Chloro-N-[4-chloro-2-(2-chlorobenzoyl)phenyl]acetamide (Dutkiewicz *et al.*, 2010) have been reported. In view of the importance of the title compound, (I), $C_{14}H_{13}NO$, and in order to determine the conformation of this molecule, a crystal structure determination has been carried out.

In the title compound, (I), with two molecules in the asymmetric unit, the dihedral angle between the mean planes of the benzene rings is 84.6 (7)° or 85.0 (6)°, respectively (Fig. 1). Extensive N—H…O (forming an $R_2^2(8)$ ring-motif) intermolecular and C—H…O intramolecular hydrogen bonds and weak C—H…Cg π -ring intermolecular interactions (dominate the crystal packing forming a zigzag chain along [010] (Table 1, Fg. 2).

Experimental

The title compound was obtained as a gift sample from R. L. Fine Chem, Bangalore. X-ray quality crystals were obtained by slow evaporation of 1:1 acetone:methanol solution (m.p.: 430-433 K).

Refinement

The N–H atoms were located by Fourier analysis and refined isotropically with DFIX = 0.87Å. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom–H lengths of 0.95Å or 1.00Å (CH). Isotropic displacement parameters for these atoms were set to 1.19-1.20 (CH), times U_{eq} of the parent atom.

Figures

Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 2. Packing diagram of the title compound viewed down the a axis. Dashed lines represent N—H···O hydrogen bonds.

map

2,2-Diphenylacetamide

Crystal data	
C ₁₄ H ₁₃ NO	F(000) = 448
$M_r = 211.25$	$D_{\rm x} = 1.231 {\rm ~Mg~m^{-3}}$
Monoclinic, P2 ₁	Cu K α radiation, $\lambda = 1.54178$ Å
Hall symbol: P 2yb	Cell parameters from 5082 reflections
a = 5.1687 (3) Å	$\theta = 4.6 - 70.4^{\circ}$
<i>b</i> = 28.5511 (13) Å	$\mu = 0.61 \text{ mm}^{-1}$
c = 7.8006 (4) Å	T = 173 K
$\beta = 98.152 \ (5)^{\circ}$	Block, colorless
$V = 1139.52 (10) \text{ Å}^3$	$0.40\times0.25\times0.20\ mm$
Z = 4	

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer	3978 independent reflections
Radiation source: Enhance (Cu) X-ray Source	3869 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.017$
Detector resolution: 16.1500 pixels mm ⁻¹	$\theta_{\text{max}} = 70.5^{\circ}, \ \theta_{\text{min}} = 5.7^{\circ}$
ω scans	$h = -6 \rightarrow 6$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010)	$k = -34 \rightarrow 34$
$T_{\min} = 0.792, T_{\max} = 0.887$	$l = -9 \rightarrow 8$
6490 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier ma
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.107$	$w = 1/[\sigma^2(F_o^2) + (0.0695P)^2 + 0.1057P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\text{max}} = 0.027$

3978 reflections	$\Delta \rho_{\text{max}} = 0.21 \text{ e} \text{ Å}^{-3}$
303 parameters	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
9 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0118 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	Uiso*/Ueq
N1	0.9797 (3)	0.54261 (6)	0.6365 (2)	0.0459 (3)
H1B	1.121 (3)	0.5307 (8)	0.600 (3)	0.055*
H1A	0.984 (5)	0.5667 (6)	0.706 (3)	0.055*
O2	1.0081 (2)	0.62240 (4)	-0.11977 (17)	0.0465 (3)
01	0.5496 (2)	0.53784 (5)	0.64407 (16)	0.0459 (3)
N2	0.5779 (3)	0.61736 (6)	-0.1120 (2)	0.0469 (4)
H2B	0.561 (5)	0.5935 (6)	-0.185 (3)	0.056*
H2A	0.431 (3)	0.6281 (9)	-0.080 (3)	0.056*
C1	0.7494 (3)	0.52226 (5)	0.5965 (2)	0.0359 (3)
C2	0.7440 (3)	0.47718 (6)	0.4902 (2)	0.0377 (3)
H2C	0.9097	0.4758	0.4381	0.045*
C3	0.5167 (3)	0.47744 (6)	0.3416 (2)	0.0406 (4)
C4	0.4550 (5)	0.51789 (8)	0.2469 (3)	0.0678 (6)
H4A	0.5534	0.5456	0.2759	0.081*
C5	0.2520 (6)	0.51860 (10)	0.1106 (4)	0.0824 (8)
H5A	0.2130	0.5467	0.0469	0.099*
C6	0.1062 (5)	0.47893 (10)	0.0666 (3)	0.0683 (6)
H6A	-0.0353	0.4796	-0.0254	0.082*
C7	0.1684 (4)	0.43851 (9)	0.1575 (3)	0.0577 (5)
H7A	0.0707	0.4108	0.1272	0.069*
C8	0.3724 (4)	0.43764 (7)	0.2933 (2)	0.0461 (4)
H8A	0.4138	0.4092	0.3543	0.055*
С9	0.7419 (3)	0.43519 (5)	0.6105 (2)	0.0375 (3)
C10	0.5760 (4)	0.43225 (7)	0.7334 (3)	0.0518 (4)
H10A	0.4577	0.4571	0.7451	0.062*
C11	0.5795 (5)	0.39352 (9)	0.8402 (3)	0.0606 (5)

H11A	0.4630	0.3921	0.9239	0.073*
C12	0.7488 (5)	0.35715 (8)	0.8270 (3)	0.0607 (5)
H12A	0.7521	0.3309	0.9020	0.073*
C13	0.9135 (5)	0.35925 (9)	0.7036 (4)	0.0738 (7)
H13A	1.0288	0.3340	0.6910	0.089*
C14	0.9117 (4)	0.39807 (8)	0.5981 (3)	0.0607 (5)
H14A	1.0294	0.3994	0.5151	0.073*
C15	0.8083 (3)	0.63780 (6)	-0.0712 (2)	0.0355 (3)
C16	0.8143 (3)	0.68289 (5)	0.0360 (2)	0.0367 (3)
H16A	0.6495	0.6841	0.0892	0.044*
C17	0.8148 (3)	0.72535 (6)	-0.0840 (2)	0.0373 (3)
C18	0.9825 (4)	0.72830 (7)	-0.2076 (2)	0.0505 (4)
H18A	1.1005	0.7034	-0.2201	0.061*
C19	0.9779 (4)	0.76758 (8)	-0.3129 (3)	0.0594 (5)
H19A	1.0941	0.7694	-0.3967	0.071*
C20	0.8089 (5)	0.80352 (7)	-0.2976 (3)	0.0585 (5)
H20A	0.8061	0.8301	-0.3710	0.070*
C21	0.6427 (5)	0.80100 (8)	-0.1751 (3)	0.0654 (6)
H21A	0.5257	0.8260	-0.1627	0.078*
C22	0.6461 (4)	0.76191 (7)	-0.0699 (3)	0.0533 (5)
H22A	0.5294	0.7603	0.0137	0.064*
C23	1.0422 (3)	0.68233 (6)	0.1827 (2)	0.0404 (3)
C24	1.1076 (5)	0.64165 (8)	0.2764 (3)	0.0702 (6)
H24A	1.0119	0.6137	0.2462	0.084*
C25	1.3098 (6)	0.64110 (11)	0.4128 (3)	0.0848 (8)
H25A	1.3508	0.6129	0.4757	0.102*
C26	1.4513 (5)	0.68078 (11)	0.4580 (3)	0.0696 (6)
H26A	1.5922	0.6801	0.5505	0.084*
C27	1.3884 (4)	0.72136 (9)	0.3690 (3)	0.0608 (5)
H27A	1.4847	0.7491	0.4008	0.073*
C28	1.1853 (4)	0.72226 (7)	0.2329 (2)	0.0468 (4)
H28A	1.1432	0.7508	0.1727	0.056*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0328 (6)	0.0411 (8)	0.0651 (9)	-0.0033 (6)	0.0110 (6)	-0.0140 (7)
O2	0.0316 (5)	0.0435 (7)	0.0654 (7)	-0.0009 (5)	0.0106 (5)	-0.0159 (5)
01	0.0321 (5)	0.0424 (6)	0.0639 (7)	-0.0001 (5)	0.0093 (5)	-0.0150 (6)
N2	0.0325 (6)	0.0435 (8)	0.0652 (9)	-0.0021 (6)	0.0086 (6)	-0.0147 (7)
C1	0.0322 (7)	0.0325 (8)	0.0430 (8)	0.0009 (5)	0.0051 (6)	-0.0007 (6)
C2	0.0361 (7)	0.0352 (8)	0.0436 (8)	-0.0012 (6)	0.0116 (6)	-0.0032 (7)
C3	0.0436 (8)	0.0388 (9)	0.0407 (8)	-0.0019 (6)	0.0107 (6)	-0.0039 (7)
C4	0.0871 (15)	0.0441 (11)	0.0663 (13)	-0.0108 (10)	-0.0092 (11)	0.0077 (9)
C5	0.107 (2)	0.0650 (15)	0.0660 (14)	-0.0016 (14)	-0.0202 (14)	0.0137 (12)
C6	0.0713 (13)	0.0847 (16)	0.0442 (10)	0.0011 (12)	-0.0085 (9)	-0.0065 (10)
C7	0.0624 (11)	0.0665 (13)	0.0438 (9)	-0.0133 (10)	0.0061 (8)	-0.0125 (9)
C8	0.0545 (9)	0.0452 (10)	0.0398 (8)	-0.0061 (8)	0.0109 (7)	-0.0068 (7)

C9	0.0368 (7)	0.0332 (8)	0.0423 (8)	-0.0013 (6)	0.0048 (6)	-0.0052 (6)
C10	0.0547 (10)	0.0487 (11)	0.0557 (10)	0.0113 (8)	0.0204 (8)	0.0036 (8)
C11	0.0734 (13)	0.0576 (11)	0.0565 (11)	0.0015 (10)	0.0284 (10)	0.0067 (10)
C12	0.0769 (13)	0.0434 (11)	0.0636 (12)	0.0004 (10)	0.0164 (10)	0.0106 (9)
C13	0.0837 (15)	0.0440 (11)	0.1012 (18)	0.0193 (11)	0.0389 (14)	0.0163 (11)
C14	0.0657 (12)	0.0439 (10)	0.0795 (14)	0.0133 (9)	0.0346 (10)	0.0054 (10)
C15	0.0327 (7)	0.0324 (7)	0.0418 (7)	-0.0002 (6)	0.0066 (6)	-0.0006 (6)
C16	0.0357 (7)	0.0337 (8)	0.0430 (8)	-0.0020 (6)	0.0129 (6)	-0.0041 (7)
C17	0.0363 (7)	0.0358 (8)	0.0399 (7)	-0.0021 (6)	0.0055 (6)	-0.0057 (6)
C18	0.0531 (10)	0.0481 (10)	0.0534 (10)	0.0080 (8)	0.0186 (8)	0.0042 (8)
C19	0.0686 (12)	0.0591 (12)	0.0550 (11)	0.0016 (10)	0.0245 (9)	0.0069 (10)
C20	0.0752 (13)	0.0429 (11)	0.0583 (11)	-0.0010 (9)	0.0123 (10)	0.0104 (8)
C21	0.0786 (15)	0.0409 (10)	0.0818 (15)	0.0171 (9)	0.0294 (12)	0.0066 (10)
C22	0.0597 (10)	0.0404 (9)	0.0655 (11)	0.0073 (8)	0.0291 (9)	0.0050 (8)
C23	0.0451 (8)	0.0399 (9)	0.0381 (7)	-0.0005 (6)	0.0123 (6)	-0.0036 (7)
C24	0.0878 (16)	0.0478 (12)	0.0684 (13)	-0.0088 (11)	-0.0116 (12)	0.0077 (10)
C25	0.109 (2)	0.0685 (16)	0.0669 (14)	0.0064 (15)	-0.0228 (14)	0.0127 (12)
C26	0.0741 (13)	0.0856 (16)	0.0441 (10)	0.0001 (12)	-0.0091 (9)	-0.0043 (11)
C27	0.0643 (12)	0.0720 (14)	0.0462 (9)	-0.0175 (10)	0.0081 (9)	-0.0141 (10)
C28	0.0553 (10)	0.0452 (10)	0.0411 (8)	-0.0090 (8)	0.0112 (7)	-0.0057 (7)

Geometric parameters (Å, °)

N1-C1	1.322 (2)	C12—H12A	0.9500
N1—H1B	0.889 (13)	C13—C14	1.380 (3)
N1—H1A	0.873 (13)	C13—H13A	0.9500
O2—C15	1.2306 (19)	C14—H14A	0.9500
O1—C1	1.2292 (19)	C15—C16	1.533 (2)
N2—C15	1.324 (2)	C16—C23	1.521 (2)
N2—H2B	0.883 (13)	C16—C17	1.532 (2)
N2—H2A	0.889 (13)	C16—H16A	1.0000
C1—C2	1.529 (2)	C17—C22	1.375 (2)
C2—C9	1.523 (2)	C17—C18	1.387 (2)
C2—C3	1.529 (2)	C18—C19	1.388 (3)
C2—H2C	1.0000	C18—H18A	0.9500
C3—C8	1.382 (2)	C19—C20	1.364 (3)
C3—C4	1.384 (3)	C19—H19A	0.9500
C4—C5	1.384 (3)	C20—C21	1.374 (4)
C4—H4A	0.9500	C20—H20A	0.9500
C5—C6	1.377 (4)	C21—C22	1.384 (3)
C5—H5A	0.9500	C21—H21A	0.9500
C6—C7	1.369 (4)	C22—H22A	0.9500
C6—H6A	0.9500	C23—C28	1.385 (2)
С7—С8	1.385 (3)	C23—C24	1.389 (3)
C7—H7A	0.9500	C24—C25	1.382 (3)
C8—H8A	0.9500	C24—H24A	0.9500
C9—C10	1.377 (3)	C25—C26	1.367 (4)
C9—C14	1.388 (3)	C25—H25A	0.9500
C10—C11	1.383 (3)	C26—C27	1.366 (4)

C10—H10A	0.9500	C26—H26A	0.9500
C11—C12	1.371 (3)	C27—C28	1.384 (3)
C11—H11A	0.9500	C27—H27A	0.9500
C12—C13	1.373 (4)	C28—H28A	0.9500
C1—N1—H1B	120.8 (16)	C13—C14—C9	121.52 (19)
C1—N1—H1A	115.9 (16)	C13—C14—H14A	119.2
H1B—N1—H1A	123 (2)	C9—C14—H14A	119.2
C15—N2—H2B	119.8 (16)	O2—C15—N2	122.28 (16)
C15—N2—H2A	123.8 (16)	O2-C15-C16	120.98 (13)
H2B—N2—H2A	116 (2)	N2—C15—C16	116.72 (13)
O1—C1—N1	122.46 (15)	C23—C16—C17	113.57 (13)
O1—C1—C2	121.11 (14)	C23—C16—C15	110.82 (13)
N1—C1—C2	116.42 (14)	C17—C16—C15	109.44 (12)
C9—C2—C1	109.27 (13)	С23—С16—Н16А	107.6
C9—C2—C3	113.52 (13)	C17—C16—H16A	107.6
C1—C2—C3	111.11 (13)	С15—С16—Н16А	107.6
С9—С2—Н2С	107.6	C22—C17—C18	118.40 (16)
C1—C2—H2C	107.6	C22—C17—C16	119.72 (14)
C3—C2—H2C	107.6	C18—C17—C16	121.88 (14)
C8—C3—C4	117.79 (17)	C17—C18—C19	120.03 (18)
C8—C3—C2	121.97 (15)	C17—C18—H18A	120.0
C4—C3—C2	120.21 (16)	C19—C18—H18A	120.0
C5—C4—C3	121.0 (2)	C20—C19—C18	120.89 (19)
С5—С4—Н4А	119.5	C20—C19—H19A	119.6
C3—C4—H4A	119.5	С18—С19—Н19А	119.6
C4—C5—C6	120.5 (2)	C19—C20—C21	119.51 (19)
C4—C5—H5A	119.7	С19—С20—Н20А	120.2
С6—С5—Н5А	119.7	C21—C20—H20A	120.2
C7—C6—C5	119.0 (2)	C20—C21—C22	119.9 (2)
С7—С6—Н6А	120.5	C20—C21—H21A	120.1
С5—С6—Н6А	120.5	C22—C21—H21A	120.1
C6—C7—C8	120.59 (19)	C17—C22—C21	121.31 (19)
С6—С7—Н7А	119.7	C17—C22—H22A	119.3
С8—С7—Н7А	119.7	C21—C22—H22A	119.3
C3—C8—C7	121.11 (18)	C28—C23—C24	117.35 (17)
С3—С8—Н8А	119.4	C28—C23—C16	121.97 (15)
С7—С8—Н8А	119.4	C24—C23—C16	120.64 (16)
C10-C9-C14	117.65 (17)	C25—C24—C23	121.1 (2)
C10—C9—C2	122.44 (15)	C25—C24—H24A	119.5
C14—C9—C2	119.91 (15)	C23—C24—H24A	119.5
C9—C10—C11	120.79 (18)	C26—C25—C24	120.5 (2)
C9—C10—H10A	119.6	С26—С25—Н25А	119.7
C11-C10-H10A	119.6	С24—С25—Н25А	119.7
C12—C11—C10	120.97 (19)	C25—C26—C27	119.4 (2)
C12—C11—H11A	119.5	C25—C26—H26A	120.3
C10-C11-H11A	119.5	C27—C26—H26A	120.3
C11—C12—C13	119.0 (2)	C26—C27—C28	120.4 (2)
C11—C12—H12A	120.5	С26—С27—Н27А	119.8
C13—C12—H12A	120.5	C28—C27—H27A	119.8

C12—C13—C14	120.0 (2)	C27—C28—C23	121.22 (18)
C12—C13—H13A	120.0	C27—C28—H28A	119.4
C14—C13—H13A	120.0	C23—C28—H28A	119.4
O1—C1—C2—C9	-79.23 (19)	O2—C15—C16—C23	-46.8 (2)
N1-C1-C2-C9	99.42 (17)	N2-C15-C16-C23	135.00 (15)
O1—C1—C2—C3	46.8 (2)	O2-C15-C16-C17	79.24 (18)
N1—C1—C2—C3	-134.55 (16)	N2-C15-C16-C17	-99.00 (16)
C9—C2—C3—C8	-17.6 (2)	C23—C16—C17—C22	-103.20 (18)
C1—C2—C3—C8	-141.21 (16)	C15—C16—C17—C22	132.39 (17)
C9—C2—C3—C4	164.54 (19)	C23—C16—C17—C18	76.54 (19)
C1—C2—C3—C4	40.9 (2)	C15-C16-C17-C18	-47.87 (19)
C8—C3—C4—C5	1.2 (4)	C22-C17-C18-C19	0.2 (3)
C2—C3—C4—C5	179.2 (2)	C16-C17-C18-C19	-179.50 (18)
C3—C4—C5—C6	0.2 (5)	C17—C18—C19—C20	-0.4 (3)
C4—C5—C6—C7	-1.3 (5)	C18-C19-C20-C21	0.6 (4)
C5—C6—C7—C8	0.9 (4)	C19—C20—C21—C22	-0.7 (4)
C4—C3—C8—C7	-1.6 (3)	C18—C17—C22—C21	-0.3 (3)
C2—C3—C8—C7	-179.55 (17)	C16—C17—C22—C21	179.4 (2)
C6—C7—C8—C3	0.6 (3)	C20-C21-C22-C17	0.6 (4)
C1—C2—C9—C10	47.5 (2)	C17—C16—C23—C28	18.5 (2)
C3—C2—C9—C10	-77.1 (2)	C15-C16-C23-C28	142.15 (16)
C1—C2—C9—C14	-132.47 (18)	C17—C16—C23—C24	-164.12 (19)
C3—C2—C9—C14	102.9 (2)	C15-C16-C23-C24	-40.5 (2)
C14—C9—C10—C11	-0.1 (3)	C28—C23—C24—C25	-0.8 (4)
C2-C9-C10-C11	179.91 (18)	C16—C23—C24—C25	-178.3 (2)
C9—C10—C11—C12	0.3 (3)	C23—C24—C25—C26	-0.4 (5)
C10-C11-C12-C13	-1.0 (4)	C24—C25—C26—C27	1.1 (5)
C11—C12—C13—C14	1.6 (4)	C25—C26—C27—C28	-0.8 (4)
C12-C13-C14-C9	-1.4 (4)	C26—C27—C28—C23	-0.4 (3)
C10-C9-C14-C13	0.7 (3)	C24—C23—C28—C27	1.1 (3)
C2—C9—C14—C13	-179.3 (2)	C16—C23—C28—C27	178.60 (17)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg4 are the centroids of the C3-C8 and C23-C28 rings, respectively.

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1B···O1 ⁱ	0.89(1)	2.20 (2)	2.9409 (17)	140 (2)
N1—H1A····O2 ⁱⁱ	0.87 (1)	2.09(1)	2.9575 (19)	177 (2)
N2—H2B…O1 ⁱⁱⁱ	0.88 (1)	2.07 (1)	2.9526 (19)	176 (2)
N2—H2A····O2 ^{iv}	0.89(1)	2.17 (2)	2.9407 (18)	145 (2)
N1—H1A····N2 ⁱⁱ	0.87 (1)	3.06 (2)	3.7246 (18)	134.(2)
N2—H2B…N1 ⁱⁱⁱ	0.88 (1)	3.10(2)	3.7246 (18)	130.(2)
C10—H10A…O1	0.95	2.50	3.093 (2)	120.
C18—H18A…O2	0.95	2.51	3.099 (2)	120
C2—H2C···Cg1 ⁱ	1.00	2.96	3.9379 (18)	165
C16—H16A…Cg4 ^{iv}	1.00	2.95	3.9263 (18)	166
Symmetry codes: (i) $x+1$, y , z ; (ii) x , y ,	<i>z</i> +1; (iii) <i>x</i> , <i>y</i> , <i>z</i> -1; (iv) <i>x</i> -1, <i>y</i>	, <i>Z</i> .		

Fig. 1

Fig. 2